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Abstract
The standard T -matrix method can be effectively used for studying the dynamics of Dirac
electrons under one-dimensional potentials in graphene. The transmission probability expressed
in terms of T -matrices and the corresponding ballistic current are derived for any smooth
one-dimensional potential, taking into account the chirality of Dirac massless carriers.
Numerical calculations are illustrated for the potential approximately describing graphene
n–p junctions.

While conventional two-dimensional (2D) electron gases are
practically formed by confining electrons in MOSFETs or
semiconductor heterostructures, graphene is a truly two-
dimensional crystal. As the limiting variance of carbon nano-
tubes, graphene is a single layer of carbon atoms densely
packed in a honeycomb lattice which can be treated as two
interpenetrating triangular sublattices often labeled A and B.
The most important consequence of such a crystal structure
is the linear dispersion relation with electron–hole symmetry
near the charge neutrality points in the energy band structure,
|E | = h̄vF|δk|, where vF ≈ 106 m s−1 is the Fermi velocity
and δk = k − K is the displacement of the wavevector
k from the neutrality point K [1–4]. So, the low energy
excitations in graphene are massless fermions which have
been shown to exhibit potentially useful properties such as a
remarkably high mobility, even at room temperature, or weak
spin–orbit and hyperfine couplings (see [2] and references
therein). Surprisingly, even though vF is very small compared
to the speed of light, the dynamics of these low energy
excitations seems to be governed by the 2D Dirac relativistic
equation [5, 6]:

[vF(�σ p̂) + U(x)]� = E�, (1)

where the pseudospin matrix �σ has components given by the
Pauli matrices, p̂ = (px, py) is the in-plane momentum

1 Author to whom any correspondence should be addressed.

operator, and U is a potential which is in this work assumed
to be one-dimensional (1D), U ≡ U(x). 1D-potential
problems are always interesting from the point of view of both
fundamentals and practical applications. In such a potential
the eigenstates � of the equation (1) have the form � =
�(x) exp(iky y), where ky is the transverse wavenumber and
�(x) are two-component spinors, � = [ϕA, ϕB]T with �A =
ϕA exp(iky y) and �B = ϕB exp(iky y) being the envelope
functions associated with the probability at the respective
sublattice sites A and B of the graphene sheet. The equation (1)
then reduces to following equations for ϕA and ϕB:

−ih̄vF

(
∂

∂x
+ ky

)
ϕB + (U(x) − E)ϕA = 0,

−ih̄vF

(
∂

∂x
− ky

)
ϕA + (U(x) − E)ϕB = 0.

(2)

Unfortunately, even for relatively simple forms of U(x) these
equations (2) cannot always be analytically solved. Different
approximations and/or numerical calculations need to be used,
depending on the form of U(x) (see, for example, [7–9]).

In this work we show that the transfer (T ) matrix method,
well known in low-dimensional semiconductor physics [10],
can be used as an effective approach for solving equation (2)
with any smooth potential U(x). The advantage of T -matrices
is that they can easily be multiplied to build up complicated
potentials in one dimension. Indeed, let us consider a potential
U(x) as schematically illustrated in figure 1(a). The region
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a

b

Figure 1. (a) Illustration of how the T -matrix can be constructed for
a smooth 1D-potential U(x) with the active region (a, b) (UL(UR) is
the potential in the left (right) lead). (b) The potential (9)
approximately models a graphene n–p junction. The case of forward
biases is demonstrated.

(This figure is in colour only in the electronic version)

where U varies with x will be called an active region (see
region (a, b) in figure 1(a)). Beyond this region, U(x) ≡
UL = const in the left lead and U(x) ≡ UR = const in
the right one (see regions x < a and x > b, respectively,
in figure 1(a)). So, we will be interested in the tunneling of
Dirac electrons from the left lead to the right one through the
active potential region. For any smooth potential, in principle,
this region can be approximately treated as a series of many
steep potentials so that within each step the potential can be
considered constant. The overall T -matrix to be found is then
simply given by multiplying the partial T -matrices for all the
steep potentials. On the other hand, for each steep potential
the partial T -matrix can be obtained from the solutions of
equation (2) in the left and the right side of it (where the
potential U is constant) by requiring an appropriate condition
of continuity at the steep interface. The calculating procedure
is the same as in semiconductor structures, but the continuity
is only required here for wavefunctions (by matching up the
corresponding amplitudes).

Let us consider, for example, the nth-step defined by
xn < x < xn+1, (n = 0, 1, 2, . . . , N − 1, where x0 ≡ a and
xN ≡ b). Within this step U(x) ≈ Un = const and solutions
of equation (2) have the general form:

ϕA(x) = Aneikn x + Bne−ikn x,

ϕB(x) = h̄vF

E − Un
[(kn + iky)Aneikn x

− (kn − iky)Bne−ikn x],

(3)

where kn =
√

[(E − Un)/h̄vF]2 − k2
y . Equations (3) can for

convenience be rewritten in the matrix form(
ϕA(x)

ϕB(x)

)
= Mn ∗ Rn(x) ∗

(
An

Bn

)
. (4)

Here the two auxiliary matrices Mn and Rn are defined as

Mn =
(

1 1
h̄vF(kn+iky )

E−Un
− h̄vF(kn−iky )

E−Un

)
and

Rn =
(

eikn x 0
0 e−ikn x

)
. (5)

Using these matrices and Cn ≡ (An, Bn)
T, the condition

of continuity of wavefunctions at the interface, located at
x = xn, between the (n − 1)- and n-steps takes a very
compact form: Mn−1Rn−1(xn)Cn−1 = MnRn(xn)Cn , which
yields Cn = R−1

n (xn)M−1
n Mn−1Rn−1(xn)Cn−1. Hence, by

definition, the partial T -matrix between the two indicated
steps can be straightforwardly obtained: T(n, n − 1) =
R−1

n (xn)M−1
n Mn−1Rn−1(xn). Further, the overall T -matrix for

the whole 1D-potential, approximated by a series of N steps
between a and b, is simply the product:

T ≡ T(N, 0) = T(N, N −1)∗T(N −1, N −2)∗· · ·∗T(1, 0).

In practice, such a procedure of constructing the overall T -
matrix can be easily realized computationally without the need
to write down intermediate wavefunctions.

From the T -matrix, as a rule, one can directly deduce
the transmission probability T . For graphene, however, it is
important to notice that both electrons (with positive energies)
and holes (with negative energies) can simultaneously
contribute to the transmission probability at the Fermi level.
Taking into account this specific property, as shown in the
appendix, we can derive the following expression for the
transmission probability of the state (E, α) from the left (x <

a where U(x) ≡ UL) to the right (x > b where U ≡ UR) of
the active region:

T (E, α) = f (s, α)

⎧⎪⎨
⎪⎩

1 − |T21|2/|T22|2 if (E − UL) and

(E − UR) have the same sgn

1 − |T22|2/|T21|2 otherwise

(6)

where the meaning of all symbols is given in the appendix.
This expression of T is rather general and can be used for
any smooth potential U(x). In the presence of an applied bias
voltage, despite the change of potential profile, making all the
step-potentials Un(n = 0, 1, . . . , N) depending on the bias,
the procedure of constructing the overall T -matrix remains the
same as in the case without bias and the expression (6) gives T
as a function of bias.

Further, in a way similar to that discussed in detail in [11],
the zero-temperature ballistic current can be easily derived:

I = 2geW

vFh2

∫ μL

μR

dE |E − UL|

×
∫ π

−π

dα sgn(E − UL)T (E, α) cos α, (7)

where e is the elementary charge, g = 4 is the degeneracy
of electron states in graphene, W is the sample width, which
is assumed to be large so that the edge effects can be
neglected [12], and μL(μR) is the bias-dependent local Fermi
energy in the left (right) lead. The applied voltage V is defined
as eV = μL − μR for forward-biased junctions or eV =
μR − μL for reverse-biased junctions. So, the expression (7)
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describes the current–voltage (I –V ) characteristics which in
the linear regime provide the conductance:

G = 2ge2W

vFh2
|μ0 − UL|

∫ π

−π

dα sgn(μ0 − UL)T (μ0, α) cos α,

(8)
where μ0 is the equilibrium Fermi energy, μ0 =
μL(0) = μR(0). Notice that the product sgn(E −
UL)T (E, α) cos α under the integral in equation (7) (or
sgn(μ0−UL)T (μ0, α) cos α in equation (8)) is always positive
and that both UL and UR in equation (7) are bias dependent.
The expressions (7) and (8) are rather general and can be used
for any smooth 1D-potential.

As an illustration for the approach suggested, we consider
the potential (figure 1(b)):

U(x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

UL for x � a

UL + [(x − a)/(b − a)](UR − UL)

for a < x < b

UR for x � b.

(9)

This potential, though very simple, is the classical model
for studying so-called Klein tunneling [13] and, moreover,
it also approximately describes the graphene n–p junc-
tions [8, 14, 15]. The potential (9) is in fact characterized by the
two parameters of barrier height 
U = (UR−UL) and junction
width d = (b − a). However, since the qualitative tunneling
feature of the studied junction is essentially determined by only
the ‘field’ 
U/d [7, 8], it is reasonable to examine those poten-
tials with different d , keeping 
U constant. Moreover, we can
always for convenience choose the origin of potential so that
in the absence of bias UR = −UL > 0, making the potential
symmetric (with respect to the point O in figure 1(b)). Thus,
given 
U ≡ 2UR, we can calculate the transmission proba-
bility T (6) as a function of E and α, and then the current (7)
and the conductance (8) for the junctions (9) with different d .
The obtained results are presented in figures 2–5, where 
U is
uniquely set to be 60 meV and our discussion will be about the
well addressed incident angle β [4, 8] rather than the angle α

in equation (6) (see the appendix for the relation between these
two angles).

In figure 2 the transmission probability T is displayed as
a function of the incident energy E for three junctions with
different d: 0 (solid), 60 nm (dashed) and 120 nm (dash-dotted
line), given the incident angle β = π/9. The most impressive
feature of these curves is that observed in the low energy
region, where unlike conventional semiconductor junctions
T is non-zero, or even reaches its maximum value of unity
(depending on the incident angle β). Consequently, in T (E)-
curves there may exist a hard well with zero-T inside. Such
a well is associated with evanescent waves in the right lead
and appears in the energy range UL + 
U/(1 + | sin β|) <

E < UL + 
U/(1 − | sin β|). The well width is then
proportional to 
U and depends on the incident angle β as

Eg = 2
U | sin β|/(1+sin2 β). For normal incident carriers,
β = 0, the well disappears and the potential is perfectly
transparent (T = 1) in agreement with the Klein tunneling
concept of massless particles (the dotted line in the top of this
figure, see also the next figure). On the other hand, though

Figure 2. Transmission probability T as a function of the incident
energy E for three potentials with the same 
U = 60 meV, but with
different d: 0 (solid), 60 nm (dashed), and 120 nm (dash-dotted line).
The angle of incidence β = π/9. The dotted line at the top shows the
case β = 0 when the potential is perfectly transparent.

the well 
Eg is independent of the junction width d , the
transmission T in the Klein tunneling region, UL < E <

UL + 
U/(1 + | sin β|), considerably decreases as d increases
(compare the three curves with different d in the energy range
−30 meV < E < 15 meV in figure 2). This is again in
agreement with the Klein tunneling concept [4, 8, 13]. On
the contrary, a slight increase of T with d in the regions of
lower (E < UL) and higher energies (E � UL + (UR −
UL)/(1 − | sin β|)) is the familiar character of conventional
electron (hole) tunneling through the considered 1D-potential
(see, for example, [16]).

Figure 3 shows the dependence on angle of incidence
of T for the junction with d = 60 nm and with different
energies E : (1) −60 meV < UL (2) 0 (in the Klein tunneling
region), and (3) 60 meV > UR. Clearly, due to Klein
tunneling [4, 13] the potential is always perfectly transparent
(T = 1) for angles β close to the normal incidence β = 0,
regardless of incident energy E . An increase in |β| causes an
enhancement of the magnitude of the transverse wavenumber,
|ky| = (|E − UL|/h̄vF)| sin β|, that in turn leads to a reduction
of T [4, 8, 9]. The features of such a T -reduction depend
on |ky|, i.e. on the incident energy E , as can be seen in this
figure. For E < UL (curve (1)) the transparency of the studied
potential is mainly associated with the tunneling of the holes
through a downward potential. In this case the transmission
probability T is non-zero for any β in the range −π/2 < β <

π/2. On the contrary, for E > UL, when the tunneling of
electrons through an upward potential is dominant (curve (3)
for E > RR) or when the Klein tunneling plays an essential
role (curve (2) for UL < E < UR), the transmission T is non-
zero only in a narrow range of incident angles β defined by
| sin β| < |E − UR|/|E − UL|. In particular, in the case of
UL < E < UR, the transmission probability for the considered
potential has been semiclassically derived [8]:

T = exp(−πvFk2
yd/
U). (10)
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Figure 3. Incident angle dependence of T : three solid curves are
calculated from equation (6) for the same potential of 
U = 60 meV
and d = 60 nm, but with different incident energies E : (1) −60,
(2) 0, and (3) 60 meV. The dashed line displays expression (8) in
comparison with the solid curve (2).

This expression for T is displayed in figure 3 by the
dashed curve for the same junction parameters and the
same energy E as those for the solid curve (2). There
is clearly a good agreement between the solid curve (2)
calculated from equation (6) and the dashed curve deduced
from expression (10). Notice, however, that the expression (10)
has been derived for only the energies in the Klein tunneling
region [18], so it cannot describe, for example, the solid
curves (1) [E < UL] and (3) [E > UR] in figure 3. Notice also
that although T depends on the junction width d , the relative
feature between the curves T (β) with different E as seen in
figure 3 is common for the potentials (9), regardless of the
value of d .

Next, in figure 4, we present the current density I ∗ =
I/W (current divided by the sample width) versus the
applied bias voltage V ((I –V ) characteristics) calculated from
equation (8) for the three junctions studied in figure 2, setting
the zero-bias (equilibrium) Fermi energy to be zero, μ0 = 0.
These I –V curves bear a resemblance to those for the so-called
Esaki diode [19], but with a much weaker negative differential
resistance (NDR) in the forward-biased part (V > 0). Such
a smear of NDR in figure 4 is essentially related to the fact
that the carriers in graphene are chiral, and therefore both
electrons and holes (negative energy electrons) can make a
contribution to the current. It seems that just the contribution
from negative energy electrons is responsible for the observed
reduction of NDR. And, as a matter of fact, the pronounced
NDR (and even the hard well in T (E)) claimed in [17]2

for a graphene rectangular barrier is a direct consequence of
mistakenly neglecting this contribution. One might assume

2 Note that due to mistakenly neglecting contributions from negative energy
electrons, the current reported in this work is inaccurate (see Nam Do [17]).

Figure 4. I–V characteristics I ∗(V ) for three junctions with the
same 
U but with different d from those studied in figure 2 in the
forward bias (V > 0) and the reverse bias regime (V < 0): d = 0
(solid), 60 nm (dashed), and 120 nm (dash-dotted line).

that such a electron–hole symmetry induced smear of NDR is
a common characteristic of graphene nano-structures. Besides,
since the forward bias V reduces the difference in potential
between two leads (figure 1(b)), in the process of increasing
V , at some bias Vc a crossover should occur from the regime
where the potential in the p-region, UR, is higher than that in
the n-region, UL (at V < Vc), to the opposite regime with
UL > UR (at V > Vc). This crossover causes a change in
sign of the differential transmission T (not shown) that in turn
gives rise to a slight peak in the I –V curves, as can be seen
at Vc = 60 mV in figure 4. Such a tendency to change the
potentials UR and UL in forward bias also leads to a reduction
of the Klein tunneling region, explaining why the influence of
the junction width d on the I –V curve is so weak in applied
voltage regime, V > 0. On the contrary, in the case of
reverse biases (V < 0), when the applied voltage enhances the
difference in potential between two leads, the Klein tunneling
region enlarges with |V |, resulting in a considerable reduction
of the current magnitude |I | as d increases.

Finally, in figure 5 we show the effective conductance
G∗ = G/W (the conductance divided by the sample width),
calculated from equation (8), as a function of the equilibrium
Fermi energy μ0 for the same junctions as those discussed
in figure 4. In all the cases under study, the curve G(μ0)

is clearly symmetric with respect to the energy μ0 = 0
(potential origin in the model under study). Understandably,
such a symmetry of G(μ0) is a consequence of two factors:
the symmetry of the potential considered (with respect to the
point O in figure 1(b)) and the electron–hole symmetry in
graphene. The lead potentials, UR = −UL, define the energies
where G vanishes (−30 and 30 meV in figure 5), while the
junction width d affects only the magnitude of G. In the
energy range UL < μ0 < UR, when the Klein tunneling
is important, G strongly decreases as d increases. Beyond
this energy range, while increasing almost linearly with |μ0|,
G experiences only a slight increase with d . The symmetric
and linear behavior of the conductance as a function of μ0 is
the typical conduction character of graphene sheets which has

4
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Figure 5. Effective conductance G∗ ≡ G/W as a function of the
equilibrium Fermi energy μ0 for the three junctions studied in
figure 4 (with the same parameter values and the same meaning for
the symbols). The units of G and W are taken here as g0 ≡ 2e2/h
and μm, respectively.

already been reported in the seminal work [1], where the so-
called minimum graphene conductivity was discussed [1, 20].

In conclusion, we have shown that the standard T -matrix
method can be used effectively for studying the dynamics
of Dirac electrons under 1D-potentials in graphene. To this
end, the transmission probability expressed in terms of T -
matrices and the corresponding ballistic current have been
derived for any smooth 1D-potential, taking into account the
chirality of Dirac massless carriers in graphene. As a useful
illustration of the suggested approach, numerical calculations
have been performed for the potential which approximately
describes graphene n–p junctions. Obtained results for the
transmission probability as a function of the incident energy
as well as the incident angle show the profound effects of the
chirality and the Klein tunneling of relativistic carriers in the
junction considered. Manifestations of these effects have also
been found in the I –V characteristics, which resemble those
of Esaki diodes but with much weaker NDR, as well as in
the Fermi energy dependence of the conductance, which is
symmetric with respect to the potential origin (for the model
considered) and very sensitive to the junction width in the
range of energy favorable for Klein tunneling. Thus, graphene
n–p junctions can be used as an effective tool for examining
the dynamical properties of Dirac massless electrons. Finally,
it is worth mentioning that the T -matrix approach suggested
is quite general and should be applicable to a wide range of
graphene nano-structures. In fact, we have performed some
calculations of energy structure, conductance and shot noise
for some structures such as multiple barriers or n–p–n junctions
and the obtained results may be discussed elsewhere.
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Appendix. Expression for the transmission
probability

The chirality is clearly manifested, for example, in the current
density expression j = vF�

+σ� . In the x-direction this
expression reduces to jx = sgn(E − U)(2vF/S) cos α, where
S is the system area and the angle α is defined as cos α =
kx/k ≡ kx/|E − U |. So, the relative direction between j and
k depends on the sign of (E − U). It is worth noting here that
the angle α is introduced as a ‘quantum number’ describing
the incoming state in the left lead. It is different from the
well addressed incident angle β [4, 8], though there is a simple
relation between two angles: β ≡ α for positive energies and
β = α + π for negative energies. Such a chiral property of
Dirac fermions makes the transmission probability in terms of
T -matrices in graphene different from that in semiconductor
structures.

Let us calculate the transmission probability T (E, α)

associated with the state (kx , ky), or in equivalence (E, α),
coming from the left, where U = UL (figure 1(a)). Taking into
account the expression jx-mentioned above, we notice that T is
non-zero only if jx > 0, requiring either (i) (E −UL) > 0 with
−π/2 < α < π/2 or (ii) (E − UL) < 0 with π/2 < α < π

or −π < α < −π/2. The sign of (E − UL) determines
the boundary behaviors for the waves in the left of the active
region. Since the transmission probability T should depend
on the boundary behaviors of the waves on both sides of the
potential, it should also depend on the sign of (E − UR) in
the right of the active region. In other words, T should be
calculated in four cases corresponding to different signs of
(E − UR) and of (E − UL) accompanied by the conditions
mentioned above for the angle α.

We consider, for example, the case of (E − UL) > 0
and (E − UR) > 0. In the T -matrix equation (AN , BN )T =
T (A0, B0)

T, the first condition, (E −UL) > 0, implies A0 = 1
and B0 = r (reflection amplitude), while the second condition,
(E − UR) > 0, leads to AN = t (transmission amplitude) and
BN = 0. From these boundary amplitudes we readily have
r = −T21/T22, and therefore T = 1 −|r |2 = 1 −|T21|2/T22|2,
where Ti j(i, j = 1, 2) are the T -matrix elements. Note again
that in addition to conditions (E −UL) > 0 and (E −UR) > 0
the obtained T is valid only for −π/2 < α < π/2.

Similarly, we can derive the T -expression in the remaining
three cases. Taking into account the condition associated with
the angle α, the final result can be written in the form:

T = f (s, α)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 − |T21|2/|T22|2,
if (E − UL) > 0 and (E − UR) > 0

1 − |T11|2/|T12|2,
if (E − UL) > 0 and (E − UR) < 0

1 − |T22|2/|T21|2,
if (E − UL) < 0 and (E − UR) > 0

1 − |T12|2/|T11|2,
if (E − UL) < 0 and (E − UR) < 0.

(A.1)

Here for compactness the function f (s, α) is introduced to
select a correct region of α for each case under study:

5
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f (s, α) = [(s + 1)/2] f1(α) + [(−s + 1)/2] f2(α) where
f1(α) = �(π/2−α)−�(−π/2−α), f2(α) = �(−π/2−α)−
�(π/2−α)−�(−π −α)+�(π −α), s = 1 if (E −UL) > 0
and −1 if (E − UL) < 0, and � is the standard step function.

We notice that, mathematically, the equalities T21 = T ∗
12

and T11 = T ∗
22 are strictly realized only in the case when kx is

purely real in both leads. However, physically, we always have
|T21|2/|T22|2 = |T12|2/|T11|2 and |T11|2/|T12|2 = |T22|2/|T21|2
that allows us to rewrite (A.1) in the form (6).
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